First-Surface Scintillator for Low Accelerating Voltage Scanning Electron Microscopy (SEM) Imaging

Author:

Tzolov Marian B.,Barbi Nicholas C.,Bowser Christopher T.,Healy Owen

Abstract

AbstractHighly luminescent thin films of zinc tungstate (ZT) have been deposited on top of conventional scintillators (Yttrium Aluminum Perovskite, Yttrium Aluminum Garnet) for electron detection in order to replace the need for a top conducting layer, such as indium tin oxide (ITO) or aluminum, which is non-scintillating and electron absorbing. Such conventional conducting layers serve the single purpose of eliminating electrical charge build-up on the scintillator. The ZT film also eliminates charging, which has been verified by measuring the Duane–Hunt limit and electron emission versus accelerating voltage. The luminescent nature of the ZT film ensures effective detection of low energy electrons from the very top surface of the structure ZT/scintillator, which we call “first-surfacescintillator”. The cathodoluminescence has been measured directly with a photodetector and spectrally resolved at different accelerating voltages. All results demonstrate the extended range of operation of the first-surface scintillator, while the conventional scintillators with a top ITO layer decline below 5 kV and have practically no output below 2 kV. Scintillators of different types were integrated in a detection system for backscattered electrons (BSE). The quality of the image at high accelerating voltages is comparable with the conventional scintillator and commercial BSE detector, while the image quality at 1 kV from the first-surface scintillator is superior.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3