Characterization of Dual-Phase Steel Microstructure by Combined Submicrometer EBSD and EPMA Carbon Measurements

Author:

Pinard Philippe T.,Schwedt Alexander,Ramazani Ali,Prahl Ulrich,Richter Silvia

Abstract

AbstractElectron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) measurements are combined to characterize an industrial produced dual-phase steel containing some bainite fraction. High-resolution carbon mappings acquired on a field emission electron microprobe are utilized to validate and improve the identification of the constituents (ferrite, martensite, and bainite) performed by EBSD using the image quality and kernel average misorientation. The combination eliminates the ambiguity between the identification of bainite and transformation-induced dislocation zones, encountered if only the kernel average misorientation is considered. The detection of carbon in high misorientation regions confirms the presence of bainite. These results are corroborated by secondary electron images after nital etching. Limitations of this combined method due to differences between the spatial resolution of EBSD and EPMA are assessed. Moreover, a quantification procedure adapted to carbon analysis is presented and used to measure the carbon concentration in martensite and bainite on a submicrometer scale. From measurements on reference materials, this method gives an accuracy of 0.02 wt% C and a precision better than 0.05 wt% C despite unavoidable effects of hydrocarbon contamination.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3