Author:
Fuseler John W.,Bedenbaugh Adam,Yekkala Krishna,Baudino Troy A.
Abstract
AbstractTumors are supported by the development of a unique vascular bed. We used fractal dimension (Db) and image analysis to quantify differences in the complexity of the vasculature in normal intestinal submucosa and intestinal polyps. ApcMin/+ mice and wild-type mice were perfused with a curable latex compound, intestines sectioned, and images collected via confocal microscopy. The images were analyzed and area (A), perimeter (P), and integrated optical density (IOD) of the normal and tumor vascular beds were measured. The Db, a quantitative descriptor of morphological complexity, was significantly greater for the polyp vasculature from ApcMin/+ mice than controls. This indicates that the polyp microvasculature is more chaotic than that of the controls, while the IOD and average vascular density values displayed no differences. This suggests the mass of blood volume is equivalent in normal and polyp microvasculature. The lower vascular area-perimeter ratios expressed by the polyp microvasculature suggest it is composed of smaller, more tortuous vessels. These data demonstrate that fractal analysis is applicable for providing a quantitative description of vascular complexity associated with angiogenesis occurring in normal or diseased tissue. Application of Db, IOD, and average density provides a clearer quantification of the complex morphology associated with tissue microvasculature.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献