Systematic Investigation of Lanthanoid Transition Heavy Metal Acetates as Electron Staining Reagents for Protein Molecules in Biological Transmission Electron Microscopy

Author:

Ishii NoriyukiORCID

Abstract

Cryo-electron microscopy, widely used for high-resolution protein structure determination, does not require staining. Yet negative staining with heavy metal salts such as uranyl acetate has been in persistent demand since the 1950s due to its image contrasting capabilities at room temperature with a common electron microscope. However, uranium compounds are nuclear fuel materials and are tightly controlled worldwide. Acetates of each lanthanoid series elements except promethium are prepared at the same concentration (2%(w/v)) and used as a model on horse spleen ferritin for electron microscopic analysis to systematically evaluate their effectiveness as electron staining reagents for the protein. Analysis shows that the triacetates of samarium and europium, followed by gadolinium and erbium, and then lanthanum and neodymium could function as electron staining reagents. Thulium-triacetate precipitates thin plate-like crystals and may be used for selecting better imaging fields. Of the 14 lanthanoid-triacetates examined, about half are viable alternatives to uranyl acetate as an electron staining reagent for ferritin, and there appears an optimal range in ionic sizes for promising lanthanoids. This is the first systematic investigation of lanthanoid transition heavy metal triacetates from the viewpoint of lanthanoid contraction, using density distribution histograms of electron micrographs as an indicator for comparison with uranyl acetate.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3