Author:
Boi Filippo S.,Mountjoy Gavin,Luklinska Zofia,Spillane Liam,Karlsson Lisa S.,Wilson Rory M.,Corrias Anna,Baxendale Mark
Abstract
AbstractStructures comprising single-crystal, iron-carbon-based nanowires encapsulated by multiwall carbon nanotubes self-organize on inert substrates exposed to the products of ferrocene pyrolysis at high temperature. The most commonly observed encapsulated phases are Fe3C, α-Fe, and γ-Fe. The observation of anomalously long-period lattice spacings in these nanowires has caused confusion since reflections from lattice spacings of ≥0.4 nm are kinematically forbidden for Fe3C, most of the rarely observed, less stable carbides, α-Fe, and γ-Fe. Through high-resolution electron microscopy, selective area electron diffraction, and electron energy loss spectroscopy we demonstrate that the observed long-period lattice spacings of 0.49, 0.66, and 0.44 nm correspond to reflections from the (100), (010), and (001) planes of orthorhombic Fe3C (space group Pnma). Observation of these forbidden reflections results from dynamic scattering of the incident beam as first observed in bulk Fe3C crystals. With small amounts of beam tilt these reflections can have significant intensities for crystals containing glide planes such as Fe3C with space groups Pnma or Pbmn.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献