Structure Identification in High-Resolution Transmission Electron Microscopic Images: An Example on Graphene

Author:

Vestergaard Jacob S.ORCID,Kling Jens,Dahl Anders B.,Hansen Thomas W.,Wagner Jakob B.,Larsen Rasmus

Abstract

AbstractA connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present work describes a method to automatically estimate the atomic structure in two-dimensional materials. As an example graphene is chosen, in which the positions of the carbon atoms are reconstructed. Lattice parameters are extracted in the frequency domain and an initial atom positioning is estimated. Next, a plausible neighborhood structure is estimated. Finally, atom positions are adjusted by simulation of a Markov random field model, integrating image evidence and the strong geometric prior. A pristine sample with high regularity and a sample with an induced hole are analyzed. False discovery rate-controlled large-scale simultaneous hypothesis testing is used as a statistical framework for interpretation of results. The first sample yields, as expected, a homogeneous distribution of carbon–carbon (C–C) bond lengths. The second sample exhibits regions of shorter C–C bond lengths with a preferred orientation, suggesting either strain in the structure or a buckling of the graphene sheet. The precision of the method is demonstrated on simulated model structures and by its application to multiple exposures of the two graphene samples.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3