Model for ASsessing the value of Artificial Intelligence in medical imaging (MAS-AI)

Author:

Fasterholdt IbenORCID,Kjølhede Tue,Naghavi-Behzad Mohammad,Schmidt Thomas,Rautalammi Quinnie T.S.,Hildebrandt Malene G.,Gerdes Anne,Barkler Astrid,Kidholm KristianORCID,Rac Valeria E.,Rasmussen Benjamin S.B.

Abstract

AbstractObjectivesArtificial intelligence (AI) is seen as a major disrupting force in the future healthcare system. However, the assessment of the value of AI technologies is still unclear. Therefore, a multidisciplinary group of experts and patients developed a Model for ASsessing the value of AI (MAS-AI) in medical imaging. Medical imaging is chosen due to the maturity of AI in this area, ensuring a robust evidence-based model.MethodsMAS-AI was developed in three phases. First, a literature review of existing guides, evaluations, and assessments of the value of AI in the field of medical imaging. Next, we interviewed leading researchers in AI in Denmark. The third phase consisted of two workshops where decision makers, patient organizations, and researchers discussed crucial topics for evaluating AI. The multidisciplinary team revised the model between workshops according to comments.ResultsThe MAS-AI guideline consists of two steps covering nine domains and five process factors supporting the assessment. Step 1 contains a description of patients, how the AI model was developed, and initial ethical and legal considerations. In step 2, a multidisciplinary assessment of outcomes of the AI application is done for the five remaining domains: safety, clinical aspects, economics, organizational aspects, and patient aspects.ConclusionsWe have developed an health technology assessment-based framework to support the introduction of AI technologies into healthcare in medical imaging. It is essential to ensure informed and valid decisions regarding the adoption of AI with a structured process and tool. MAS-AI can help support decision making and provide greater transparency for all parties.

Funder

An in-house grant at Odense University Hospital (Denmark) named “Konkurrencemidler"

Publisher

Cambridge University Press (CUP)

Subject

Health Policy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3