Impact of species and subgenotypes of bovine viral diarrhea virus on control by vaccination

Author:

Fulton Robert W.

Abstract

AbstractBovine viral diarrhea viruses (BVDV) are diverse genetically and antigenically. This diversity impacts both diagnostic testing and vaccination. In North America, there are two BVDV species, 1 and 2 with 3 subgentoypes, BVDV1a, BVDV1b and BVDV2a. Initially, US vaccines contained BVDV1a cytopathic strains. With the reporting of BVDV2 severe disease in Canada and the USA there was focus on protection by BVDV1a vaccines on BVDV2 disease. There was also emphasis of controlling persistently infected (PI) cattle resulted in studies for fetal protection afforded by BVDV1a vaccines. Initially, studies indicated that some BVDV1a vaccines gave less than 100% protection against BVDV2 challenge for fetal infection. Eventually vaccines in North America added BVDV2a to modified live virus (MLV) and killed BVDV1a vaccines. Ideally, vaccines should stimulate complete immunity providing 100% protection against disease, viremias, shedding, and 100% fetal protection in vaccinates when challenged with a range of diverse antigenic viruses (subgenotypes). There should be a long duration of immunity stimulated by vaccines, especially for fetal protection. MLV vaccines should be safe when given according to the label and free of other pathogens. While vaccines have now included BVDV1a and BVDV2a, with the discovery of the predominate subgenotype of BVDV in the USA to be BVDV1b, approximately 75% or greater in prevalence, protection in acute challenge and fetal protection studies became more apparent for BVDV1b. Thus many published studies examined protection by BVDV1a and BVDV2a vaccines against BVDV1b in acute challenge and fetal protection studies. There are no current BVDV1b vaccines in the USA. There are now more regulations on BVDV reproductive effects by the USDA Center for Veterinary Biologics (CVB) regarding label claims for protection against abortion, PI calves, and fetal infections, including expectations for studies regarding those claims. Also, the USDA CVB has a memorandum providing the guidance for exemption of the warning label statement against the use of the MLV BVDV in pregnant cows and calves nursing pregnant cows. In reviews of published studies in the USA, the results of acute challenge and fetal protection studies are described, including subgenotypes in vaccines and challenge strains and the results in vaccinates and the vaccinates' fetuses/newborns. In general, vaccines provide protection against heterologous strains, ranging from 100% to partial but statistically significant protection. In recent studies, the duration of immunity afforded by vaccines was investigated and reported. Issues of contamination remain, especially since fetal bovine serums may be contaminated with noncytopathic BVDV. In addition, the potential for immunosuppression by MLV vaccines exists, and new vaccines will be assessed in the future to prove those MLV components are not immunosuppressive by experimental studies. As new subgenotypes are found, the efficacy of the current vaccines should be evaluated for these new strains.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3