Residual theory in λ-calculus: a formal development

Author:

Huet Gérard

Abstract

AbstractWe present the complete development, in Gallina, of the residual theory of β-reduction in pure λ-calculus. The main result is the Prism Theorem, and its corollary Lévy's Cube Lemma, a strong form of the parallel-moves lemma, itself a key step towards the confluence theorem and its usual corollaries (Church-Rosser, uniqueness of normal forms). Gallina is the specification language of the Coq Proof Assistant (Dowek et al., 1991; Huet 1992b). It is a specific concrete syntax for its abstract framework, the Calculus of Inductive Constructions (Paulin-Mohring, 1993). It may be thought of as a smooth mixture of higher-order predicate calculus with recursive definitions, inductively defined data types and inductive predicate definitions reminiscent of logic programming. The development presented here was fully checked in the current distribution version Coq V5.8. We just state the lemmas in the order in which they are proved, omitting the proof justifications. The full transcript is available as a standard library in the distribution of Coq.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference18 articles.

1. Rudnicki P. (1992) An overview of the MIZAR project. Proceedings Workshop on Types for Proofs and Programs, Nordström B. Petersson K. and Plotkin G. (eds.). (Available by anonymous ftp from animal.cs.chalmers.se.)

2. A Proof of the Church-Rosser Theorem and its Representation in a Logical Framework

3. Narayana A. (1991) Proof of Church-Rosser Theorem in Calculus of Constructions. MS thesis, IIT Kanpur, India, 04.

4. Huet G. (1992b) The Gallina specification language: A case study. Proceedings 12th FST/TCS Conference, New Delhi, India. Shyamasundar R. (ed.), pp. 229–240. Springer-Verlag LNCS 652.

5. Huet G. (1992a) Constructive Computation Theory, Part I. Course Notes, DEA Informatique, Mathématiques et Applications, Paris, 10.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. More Church-Rosser Proofs in BELUGA;Electronic Proceedings in Theoretical Computer Science;2024-04-23

2. An efficient algorithm for type-safe structural diffing;Proceedings of the ACM on Programming Languages;2019-07-26

3. Braids via term rewriting;Theoretical Computer Science;2019-07

4. Proof-relevant π-calculus: a constructive account of concurrency and causality;Mathematical Structures in Computer Science;2017-05-04

5. CERTIFYING CONFLUENCE PROOFS VIA RELATIVE TERMINATION AND RULE LABELING;LOG METH COMPUT SCI;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3