A representation theorem for second-order functionals

Author:

JASKELIOFF MAURO,O'CONNOR RUSSELL

Abstract

AbstractRepresentation theorems relate seemingly complex objects to concrete, more tractable ones. In this paper, we take advantage of the abstraction power of category theory and provide a datatype-generic representation theorem. More precisely, we prove a representation theorem for a wide class of second-order functionals which are polymorphic over a class of functors. Types polymorphic over a class of functors are easily representable in languages such as Haskell, but are difficult to analyse and reason about. The concrete representation provided by the theorem is easier to analyse, but it might not be as convenient to implement. Therefore, depending on the task at hand, the change of representation may prove valuable in one direction or the other. We showcase the usefulness of the representation theorem with a range of examples. Concretely, we show how the representation theorem can be used to prove that traversable functors are finitary containers, how coalgebras of a parameterised store comonad relate to very well-behaved lenses, and how algebraic effects might be implemented in a functional language.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference30 articles.

1. Categories for the Working Mathematician

2. Van Laarhoven T. 2009c (Apr.) Where Do I Get My Non-Regular Types? Available at: http://twanvl.nl/blog/haskell/non-regular2.

3. On Monadic Parametricity of Second-Order Functionals

4. Gibbons J. & Johnson M. (2012) Relating algebraic and coalgebraic descriptions of lenses. 49 (Bidirectional Transformations 2012). Berlin, Germany.

5. Category Theory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Profunctor Optics, a Categorical Update;Compositionality;2024-02-23

2. A totally predictable outcome: an investigation of traversals of infinite structures;Proceedings of the 15th ACM SIGPLAN International Haskell Symposium;2022-09-06

3. On Structuring Functional Programs with Monoidal Profunctors;Electronic Proceedings in Theoretical Computer Science;2022-06-30

4. Generalized monoidal effects and handlers;Journal of Functional Programming;2020

5. Build systems à la carte: Theory and practice;Journal of Functional Programming;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3