On-line and off-line partial evaluation: semantic specifications and correctness proofs

Author:

Consel Charles,Khoo Siau Cheng

Abstract

AbstractThis paper presents semantic specifications and correctness proofs for both on-line and offline partial evaluation of strict first-order functional programs. To do so, our strategy consists of defining a core semantics as a basis for the specification of three non-standard evaluations: instrumented evaluation, on-line and off-line partial evaluation. We then use the technique of logical relations to prove the correctness of both on-line and off-line partial evaluation semantics.The contributions of this work are as follows:1. We provide a uniform framework to defining and proving correct both on-line and off-line partial evaluation.2. This work required a formal specification of on-line partial evaluation with polyvariant specialization. We define criteria for its correctness with respect to an instrumented standard semantics. As a by-product, on-line partial evaluation appears to be based on a fixpoint iteration process, just like binding-time analysis.3. We show that binding-time analysis, the preprocessing phase of off-line partial evaluation, is an abstraction of on-line partial evaluation. Therefore, its correctness can be proved with respect to on-line partial evaluation, instead of with respect to the standard semantics, as is customarily done.4. Based on the binding-time analysis, we formally derive the specialization semantics for off-line partial evaluation. This strategy ensures the correctness of the resulting semantics.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Program Specialization;2013-02-05

2. Offline partial evaluation can be as accurate as online partial evaluation;ACM Transactions on Programming Languages and Systems;2004-01

3. Program specialization for execution monitoring;Journal of Functional Programming;2003-05

4. Systematic design of program transformation frameworks by abstract interpretation;ACM SIGPLAN Notices;2002-01

5. Specifying Monogenetic Specializers by Means of a Relation Between Source and Residual Programs;Perspectives of Systems Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3