Inferring the COVID-19 infection fatality rate in the community-dwelling population: a simple Bayesian evidence synthesis of seroprevalence study data and imprecise mortality data

Author:

Campbell HarlanORCID,Gustafson PaulORCID

Abstract

Abstract Estimating the coronavirus disease-2019 (COVID-19) infection fatality rate (IFR) has proven to be particularly challenging –and rather controversial– due to the fact that both the data on deaths and the data on the number of individuals infected are subject to many different biases. We consider a Bayesian evidence synthesis approach which, while simple enough for researchers to understand and use, accounts for many important sources of uncertainty inherent in both the seroprevalence and mortality data. With the understanding that the results of one's evidence synthesis analysis may be largely driven by which studies are included and which are excluded, we conduct two separate parallel analyses based on two lists of eligible studies obtained from two different research teams. The results from both analyses are rather similar. With the first analysis, we estimate the COVID-19 IFR to be 0.31% [95% credible interval (CrI) of (0.16%, 0.53%)] for a typical community-dwelling population where 9% of the population is aged over 65 years and where the gross-domestic-product at purchasing-power-parity (GDP at PPP) per capita is $17.8k (the approximate worldwide average). With the second analysis, we obtain 0.32% [95% CrI of (0.19%, 0.47%)]. Our results suggest that, as one might expect, lower IFRs are associated with younger populations (and may also be associated with wealthier populations). For a typical community-dwelling population with the age and wealth of the United States we obtain IFR estimates of 0.43% and 0.41%; and with the age and wealth of the European Union, we obtain IFR estimates of 0.67% and 0.51%.

Funder

The European Union's Horizon 2020 research and innovation programme under ReCoDID grant agreement

The Canadian Institutes of Health Research, Institute of Genetics

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3