Comparison of ARIMA, ES, GRNN and ARIMA–GRNN hybrid models to forecast the second wave of COVID-19 in India and the United States

Author:

Wang GangORCID,Wu Tiantian,Wei Wudi,Jiang JunjunORCID,An Sanqi,Liang Bingyu,Ye LiORCID,Liang Hao

Abstract

Abstract As acute infectious pneumonia, the coronavirus disease-2019 (COVID-19) has created unique challenges for each nation and region. Both India and the United States (US) have experienced a second outbreak, resulting in a severe disease burden. The study aimed to develop optimal models to predict the daily new cases, in order to help to develop public health strategies. The autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models, ARIMA–GRNN hybrid model and exponential smoothing (ES) model were used to fit the daily new cases. The performances were evaluated by minimum mean absolute per cent error (MAPE). The predictive value with ARIMA (3, 1, 3) (1, 1, 1)14 model was closest to the actual value in India, while the ARIMA–GRNN presented a better performance in the US. According to the models, the number of daily new COVID-19 cases in India continued to decrease after 27 May 2021. In conclusion, the ARIMA model presented to be the best-fit model in forecasting daily COVID-19 new cases in India, and the ARIMA–GRNN hybrid model had the best prediction performance in the US. The appropriate model should be selected for different regions in predicting daily new cases. The results can shed light on understanding the trends of the outbreak and giving ideas of the epidemiological stage of these regions.

Funder

China Postdoctoral Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3