Abstract
A graph Γ is called symmetric if its automorphism group is transitive on its vertices and edges. Let p be an odd prime, Z(p) the field of integers modulo p, and Z*(p) = (a ∈ Z(p) | a ≠ 0}, the multiplicative subgroup of Z(p). This paper gives a simple proof of the equivalence of two statements:(1) Γ is a symmetric graph with p vertices, each having degree n ≥ 1;(2) the integer n is an even divisor of p − 1 and Γ is isomorphic to the graph whose vertices are the elements of Z(p) and whose edges are the pairs {a, a+h} where a ∈ Z(p) and h ∈ H, the unique subgroup of Z*(p) of order n.In addition, the automorphism group of Γ is determined.
Publisher
Cambridge University Press (CUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献