Abstract
We classify all polynomials$P(X)\in \mathbb{Q}[X]$with rational coefficients having the property that the quotient$(\unicode[STIX]{x1D706}_{i}-\unicode[STIX]{x1D706}_{j})/(\unicode[STIX]{x1D706}_{k}-\unicode[STIX]{x1D706}_{\ell })$is a rational number for all quadruples of roots$(\unicode[STIX]{x1D706}_{i},\unicode[STIX]{x1D706}_{j},\unicode[STIX]{x1D706}_{k},\unicode[STIX]{x1D706}_{\ell })$with$\unicode[STIX]{x1D706}_{k}\neq \unicode[STIX]{x1D706}_{\ell }$.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Potential energy of totally positive algebraic integers;Journal of Mathematical Analysis and Applications;2022-12
2. Rational quotients of two linear forms in roots of a polynomial;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2018-02-01