Abstract
For a finite group G and a subset S of G which does not contain the identity of G, we use Cay(G, S) to denote the Cayley graph of G with respect to S. For a positive integer m, the group G is called a (connected) m-DCI-group if for any (connected) Cayley graphs Cay(G, S) and Cay(G, T) of out-valency at most m, Sσ = T for some σ ∈ Aut(G) whenever Cay(G, S) ≅ Cay(G, T). Let p(G) be the smallest prime divisor of |G|. It was previously shown that each finite group G is a connected m-DCI-group for m ≤ p(G) − 1 but this is not necessarily true for m = p(G). This leads to a natural question: which groups G are connected p(G)-DCI-groups? Here we conjecture that the answer of this question is positive for finite simple groups, that is, finite simple groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and only if G = A5.
Publisher
Cambridge University Press (CUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献