Abstract
Let p be a prime and let Q be a centre-by-finite p′-group. It is shown that the ZQ-modules which satisfy the minimal condition on submodules and have p–groups as their underlying additive groups can be classified in terms of the irreducible ZpQ-modules. If such a ZQ-module V is indecomposable it is either the ZpQ-injective hull W of an irreducible ZpQ-module (viewed as a ZQ-module) or is the submodule W[pn] of such a W consisting of the elements ω ∈ W which satisfy pnw = 0.This classification is used to classify certain abelian-by-nilpotent groups which satisfy Min-n, the minimal condition on normal subgroups. Among the groups to which our classification applies are all quasi-radicable metabelian groups with Min-n, and all metabelian groups which satisfy Min-n and have abelian Sylow p-subgroups for all p.It is also shown that if Q is any countable locally finite p'-group and V is a ZQ-module whose additive group is a p-group, then V can be embedded in a ZQ-module whose additive group is a minimal divisible group containing that of V. Some applications of this result are given.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Some properties of groups inherited by normal subgroups of finite index
2. [14] McDougall D. , “Soluble groups with the minimal condition for normal subgroups”, Math. Z. (to appear).
3. Torsion-Free and Divisible Modules Over Non-Integral-Domains
4. Über injektive Moduln
5. On generalized semi-primary rings and Krull-Remak-Schmidt's theorem;Azurnaya;Japan J. Math.,1948
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献