The modular counterparts of Cayley's hyperdeterminants

Author:

Glynn David G.

Abstract

LetHbe a hypersurface of degreeminPG(n, q),q=ph,pprime.(1) Ifm<n+ 1,Hhas 1 (modp) points.(2) Ifm=n+ 1,Hhas 1 (modp) points ⇔Hp−1has no termWe show some applications, including the generalised Hasse invariant for hypersurfaces of degreen+ 1 inPG(n, F), various porperties of finite projective spaces, and in particular ap-modular invariant detpof any (n+ 1)r+2= (n+ 1)×…×(n+ 1) array on hypercubeAover a field characteristicp. This invariant is multiplicative in that detp(AB) = detp(B), whenever the product (or convolution of the two arraysAandBis defined, and both arrays are not 1-dimensional vectors. (IfAis (n+ 1)r+2andBis (n+ 1)s+2, thenABis (n+ 1)r+s+2.) The geometrical meaning of the invariant is that over finite fields of characteristicpthe number of projections ofAfromr+ 1 points in any givenr+ 1 directions of the array to a non-zero point in the final direction is 0 (modp). Equivalently, the number of projections ofAfromrpoints in any givenrdirections to a non-singular (n+ 1)2matrix is 0 (modp). Historical aspects of invariant theory and connections with Cayley's hyperdeterminant Det for characteristic 0 fields are mentioned.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference15 articles.

1. Über die Resultante eines Systemes mehrerer algebraischen Gleichungen;Schläfli;Denkschr. der Kaiserlicher Akad. der Wiss., math-naturwiss. Klasse,1852

2. On the classification of geometric codes by polynomial functions

3. Note sur un système de certaines formules.

4. On the theory of linear transformations;Cayley;Cambr. Math. J.,1845

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3