Abstract
In the paper “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl. 9 (1964), Ivan Singer proved that if K is an approximatively compact Chebyshev set in a metric space, then the metric projection onto K is continuous. The object of this paper is to show that though, in general, the continuity of the metric projection supported by a Chebyshev set does not imply that the set is approximatively compact, it is indeed so in a large class of Banach spaces, including the locally uniformly convex spaces. It is also proved that in such a space X the metric projection onto a Chebyshev set is continuous on a set dense in X.
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献