Properly embedded and immersed minimal surfaces in the Heisenberg group

Author:

Cheng Jih-Hsin,Hwang Jenn-Fang

Abstract

We study properly embedded and immersed p(pseudohermitian)-minimal surfaces in the 3-dimensional Heisenberg group. From the recent work of Cheng, Hwang, Malchiodi, and Yang, we learn that such surfaces must be ruled surfaces. There are two types of such surfaces: band type and annulus type according to their topology. We givn an explicit expression for these surfaces. Among band types there is a class of properly embedded p-minimal surfaces of so called helicoid type. We classify all the helicoid type p-minimal surfaces. This class of p-minimal surfaces includes all the entire p-minimal graphs (except contact planes) over any plane. Moreover, we give a necessary and sufficient condition for such a p-minimal surface to have no singular points. For general complete immersed p-minimal surfaces, we prove a half space theorem and give a criterion for the properness.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference15 articles.

1. Topologie et Courbure des Surfaces Minimales Proprement Plongees de ℝ 3

2. [7] Garofalo N. and Pauls S. . ‘The Bernstein problem in the Heisenberg group’, (preprint).

3. [1] Cheng J.-H. , Hwang J.-F. , Malchiodi A. and Yang P. , ‘Minimal surfaces in pseudohermitian geometry’, arXiv: math.DG/0401136.

4. Minimal Surfaces in the Heisenberg Group

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free Boundary Constant p-Mean Curvature Surfaces Intersecting the Pansu Sphere;The Journal of Geometric Analysis;2023-01-12

2. Existence and structure of P-area minimizing surfaces in the Heisenberg group;Journal of Differential Equations;2023-01

3. Submanifolds in Cauchy Riemann Geometry;Journal of Mathematical Study;2020-06

4. Strong maximum principle for mean curvature operators on subRiemannian manifolds;Mathematische Annalen;2018-06-01

5. Umbilicity and characterization of Pansu spheres in the Heisenberg group;Journal für die reine und angewandte Mathematik (Crelles Journal);2018-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3