Abstract
A projection morphism ρ: G1 → G2 of finite graphs maps the vertex-set of G1 onto the vertex-set of G2, and preserves adjacency. As an example, if each vertex v of the dodecahedron graph D is identified with its unique antipodal vertex v¯ (which has distance 5 from v) then this induces an identification of antipodal pairs of edges, and gives a (2:1)-projection p: D → P where P is the Petersen graph.In this paper a category-theoretical approach to graphs is used to define and study such double cover projections. An upper bound is found for the number of distinct double covers ρ: G1 → G2 for a given graph G2. A classification theorem for double cover projections is obtained, and it is shown that the n–dimensional octahedron graph K2,2,…,2 plays the role of universal object.
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. Algebraic Graph Theory
2. Automorphisms of graphs and coverings
3. [3] Farzan M. and Waller D.A. , “Kronecker products and local joins of graphs”, submitted.
4. Antipodal covering graphs
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献