Abstract
We recall the definition and properties of an algebra cone C of a complex unital Banach algebra A. It can be shown that C induces on A an ordering which is compatible with the algebraic structure of A, and A is then called an ordered Banach algebra. The Banach algebra ℒ(E) of all bounded linear operators on a complex Banach lattice E is an example of an ordered Banach algebra, and an interesting aspect of research in ordered Banach algebras is that of investigating in an ordered Banach algebra-context certain problems that originated in ℒ(E). In this paper we investigate the problems of providing conditions under which (1) a positive element a with spectrum consisting of 1 only will necessarily be greater than or equal to 1, and (2) f (a) will be positive if a is positive, where f (a) is the element defined by the holomorphic functional calculus.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献