Abstract
A ring is a left Q-ring if all of its left ideals are quasi-injective. For an integer m ≤ 2, a sfield D, and a null D-algebra V whose left and right D-dimensions are both equal to one, let H(m, D, V) be the ring of all m x m matrices whose only non-zero entries are arbitrary elements of D along the diagonal and arbitrary elements of V at the places (2, 1), …, (m, m-l) and (l, m). We show that the only indecomposable non-local left Q-rings are the simple artinian rings and the rings H(m, D, V). An arbitrary left Q-ring is the direct sum of a finite number of indecomposable non-local left Q-rings and a Q-ring whose idempotents are all central.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献