Abstract
Let $G$ be a finite solvable group and let $p$ be a prime. In this note, we prove that $p$ does not divide $\unicode[STIX]{x1D711}(1)$ for every irreducible monomial $p$-Brauer character $\unicode[STIX]{x1D711}$ of $G$ if and only if $G$ has a normal Sylow $p$-subgroup.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Monomial characters of finite solvable groups;Archiv der Mathematik;2023-02-08
2. Normal Sylow subgroups and monomial Brauer characters;Frontiers of Mathematics in China;2021-08-28
3. MONOLITHIC BRAUER CHARACTERS;Bulletin of the Australian Mathematical Society;2019-03-28
4. ITÔ’S THEOREM AND MONOMIAL BRAUER CHARACTERS II;Bulletin of the Australian Mathematical Society;2017-10-04