Expansivity of semi-hyperbolic Lipschitz mappings

Author:

Diamond P.,Kloeden P.,Kozyakin V.,Pokrovskii A.

Abstract

Semi-hyperbolic dynamical systems generated by Lipschitz mappings are shown to be exponentially expansive, locally at least, and explicit rates of expansion are determined. The result is applicable to nonsmooth noninvertible systems such as those with hysteresis effects as well as to classical systems involving hyperbolic diffeomorphisms.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. Unstable homeomorphisms

2. Geometric Theory of Dynamical Systems

3. A general model of evolutionary processes. Exponential dichotomy—II

4. Geodesic flows on closed Riemannian manifolds with negative curvature;Anosov;Proc. Steklov Inst. Math.,1967

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. List of publications of Professor Alexei Pokrovskii;Journal of Physics: Conference Series;2011-02-15

2. Semi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings;Journal of Difference Equations and Applications;2008-10

3. Feasibility of numerical modelling: Information aspect;Automation and Remote Control;2007-12

4. Continuous inverse shadowing and hyperbolicity;Bulletin of the Australian Mathematical Society;2003-02

5. Bi—shadowing of Infinite Trajectories for Difference Equations in Banach Spaces;Journal of Difference Equations and Applications;2001-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3