Author:
Byrne Graeme J.,Mills T.M.,Smith Simon J.
Abstract
Given f ∈ C [−1, 1], let Hn, 3(f, x) denote the (0,1,2) Hermite-Fejér interpolation polynomial of f based on the Chebyshev nodes. In this paper we develop a precise estimate for the magnitude of the approximation error |Hn, 3(f, x) − f(x)|. Further, we demonstrate a method of combining the divergent Lagrange and (0,1,2) interpolation methods on the Chebyshev nodes to obtain a convergent rational interpolatory process.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. A new estimate for the approximation of functions by Hermite-Fejér interpolation polynomials
2. On interpolation polynomials of the Hermite-Fejér type
3. Rational Hermite-Fejér interpolation polynomials;Xu;J. Engrg. Math.,1985
4. Über die interpolatorische Darstellung stetiger Funktionen;Faber;Jahresber. Deutsch. Math.-Verein.,1914
5. On (0,1,2) interpolation in uniform metric;Szabados;Proc. Amer. Math. Soc.,1990
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献