Abstract
AbstractWe prove a hyperstability result for the Cauchy functional equation$f(x+ y)= f(x)+ f(y)$, which complements some earlier stability outcomes of J. M. Rassias. As a consequence, we obtain the slightly surprising corollary that for every function$f$, mapping a normed space${E}_{1} $into a normed space${E}_{2} $, and for all real numbers$r, s$with$r+ s\gt 0$one of the following two conditions must be valid:$$\begin{eqnarray*}\displaystyle \sup _{x, y\in E_{1}}\Vert f(x+ y)- f(x)- f(y)\Vert \hspace{0.167em} \mathop{\Vert x\Vert }\nolimits ^{r} \hspace{0.167em} \mathop{\Vert y\Vert }\nolimits ^{s} = \infty , &&\displaystyle\end{eqnarray*}$$$$\begin{eqnarray*}\displaystyle \sup _{x, y\in E_{1}}\Vert f(x+ y)- f(x)- f(y)\Vert \hspace{0.167em} \mathop{\Vert x\Vert }\nolimits ^{r} \hspace{0.167em} \mathop{\Vert y\Vert }\nolimits ^{s} = 0. &&\displaystyle\end{eqnarray*}$$In particular, we present a new method for proving stability for functional equations, based on a fixed point theorem.
Publisher
Cambridge University Press (CUP)
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献