Abstract
This paper discusses rational edged tetrahedra, in 3, 4 and n dimensions, with rational volume. The main results are (i) a proof of the existence of infinitely many tetrahedra with rational edge-lengths, face-areas and volume and (ii) a proof that there exist dimensions for which all regular hypertetrahedra with rational edge-lengths have rational hypervolume.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献