A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on

Author:

Kelly G.M.

Abstract

Many problems lead to the consideration of “algebras”, given by an object A of a category A together with “actions” TkAA on A of one or more endofunctors of A, subjected to equational axioms. Such problems include those of free monads and free monoids, of cocompleteness in categories of monads and of monoids, of orthogonal subcategories (= generalized sheaf-categories), of categories of continuous functors, and so on; apart from problems involving the algebras for their own sake.Desirable properties of the category of algebras - existence of free ones, cocompleteness, existence of adjoints to algebraic functors - all follow if this category can be proved reflective in some well-behaved category: for which we choose a certain comma-category T/AWe show that the reflexion exists and is given as the colimit of a simple transfinite sequence, if A is cocomplete and the Tk preserve either colimits or unions of suitably-long chains of subobjects.The article draws heavily on the work of earlier authors, unifies and simplifies this, and extends it to new problems. Moreover the reflectivity in T/A is stronger than any earlier result, and will be applied in forthcoming articles, in an enriched version, to the study of categories with structure.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sheaf representation of monoidal categories;Advances in Mathematics;2023-03

2. Why Are Proofs Relevant in Proof-Relevant Models?;Proceedings of the ACM on Programming Languages;2023-01-09

3. Versatile and Flexible Modelling of the RISC-V Instruction Set Architecture;Lecture Notes in Computer Science;2023

4. What Makes a Strong Monad?;Electronic Proceedings in Theoretical Computer Science;2022-06-30

5. A class of higher inductive types in Zermelo‐Fraenkel set theory;Mathematical Logic Quarterly;2022-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3