Abstract
For a constrained minimization problem with cone constraints, lagrangean necessary conditions for a minimum are well known, but are subject to certain hypotheses concerning cones. These hypotheses are now substantially weakened, but a counter example shows that they cannot be omitted altogether. The theorem extends to minimization in a partially ordered vector space, and to a weaker kind of critical point (a quasimin) than a local minimum. Such critical points are related to Kuhn-Tucker conditions, assuming a constraint qualification; in certain circumstances, relevant to optimal control, such a critical point must be a minimum. Using these generalized critical points, a theorem analogous to duality is proved, but neither assuming convexity, nor implying weak duality.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. [8] Craven B.D. and Koliha J.J. , “Generalizations of Farkas's theorem”, SIAM J. Math. Appl. (to appear).
2. Sufficient Fritz John optimality conditions
3. Converse duality in Banach space
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献