Abstract
Let G be a nondiscrete locally compact abelian group with dual group Γ. For 1 ≤ p ≤ ∞, denote by Ap(G) the space of integrable functions on G whose Fourier transforms belong to Lp(Γ). We investigate multipliers from Ap(G) to Aq(G). If G is compact and 2 < p1, p2 < ∞, we show that multipliers of and multipliers of are different, provided Pl ≠ P2. For compact G, we also exhibit a relationship between lr (Γ) and the multipliers from Ap(G) to Aq(G). If G is a compact nonabelian group we observe that the spaces Ap(G) behave in the same way as in the abelian case as far as the multiplier problems are concerned.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献