Abstract
AbstractBy using the pseudo-Hermitian connection (or Tanaka–Webster connection) $\widehat \nabla $, we construct the parametric equations of Legendre pseudo-Hermitian circles (whose $\widehat \nabla $-geodesic curvature $\widehat \kappa $ is constant and $\widehat \nabla $-geodesic torsion $\widehat \tau $ is zero) in S3. In fact, it is realized as a Legendre curve satisfying the $\widehat \nabla $-Jacobi equation for the $\widehat \nabla $-geodesic vector field along it.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Pseudo-Hermitian structures on a real hypersurface
2. [16] Vranceanu G. , Leçons de géométrie différentielle, Éditions de l’Académie de la République Populaire Roumaine, Bucharest (1947).
3. Variational problems on contact Riemannian manifolds
4. Gauss maps of surfaces in contact space forms;Tamura;Comment. Math. Univ. St. Pauli,2003
5. Transformation Groups in Differential Geometry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献