Abstract
Let B be a Banach space and X ⊂ B a normal cone such that the norm is monotone on X for the order determinated by X.We study the sup, denoted by i(X), of the q ≥ 1 such that, for each E> 0 and each n, there are x1, …, xn in X such that:for all a1, …, an ≥ 0, where ‖ ‖q is the norm in lq.We prove that i(X) is the inf of the p for which we have:The proof use a similar theorem of Kirvine, concerning Banach Riesz spaces. Here conical measures are a useful tool. We establish a link with a preceding work in which we adapt the Maurey theory factorisation of operators with values in a LP space, to the case of normal cones, contained in a Banach space.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Structures uniformes faibles sur une classe de cônes et d’ensembles convexes
2. [5] Krivine J.L. , ‘Théorèmes de factorisation dans les espaces réticulés’, Séminaire Maurey-Schwartz exposés XXII et XXIII 1973–1974, Ecole Polytechnique Paris.
3. Sous-Espaces de Dimension Finie Des Espaces de Banach Reticules
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献