Author:
Barrucand Pierre,Hirschhorn Michael D.
Abstract
Let rk (n) denote the number of representations of n as the sum of k squares. We give elementary proofs of relations between rk (n) and rk (m) where n = 4λm and 4 ∤ m, when k = 5, 7, 9 and 11. The relations, which were first stated without proof by Stieltjes, are of the form rk (n) = Crk (m) where C depends on λ and on the residue of m modulo 8. They have recently been include by S. Cooper in a more complete description of the relations between rk (n) and rk (n′) where n′ is the squarefree part of n, when k = 5, 7, 9 and 11.
Publisher
Cambridge University Press (CUP)
Reference2 articles.
1. [1] Cooper S. , Sums of five, seven and nine squares, The Ramanujan Journal (to appear).
2. [2] Cooper S. , ‘On the number of representations of certain integers as sums of eleven or thirteen squares’, (submitted).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献