Author:
Bryce R.A.,Fedri V.,Serena L.
Abstract
We prove that, in a finite soluble group, all of whose Sylow normalisers are super-soluble, the Fitting length is at most 2m + 2, where pm is the highest power of the smallest prime p dividing |G/Gs| here Gs is the supersoluble residual of G. The bound 2m + 2 is best possible. However under certain structural constraints on G/GS, typical of the small examples one makes by way of experimentation, the bound is sharply reduced. More precisely let p be the smallest, and r the largest, prime dividing the order of a group G in the class under consideration. If a Sylow p–subgroup of G/GS acts faithfully on every r-chief factor of G/GS, then G has Fitting length at most 3.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献