Positive solutions of a class of biological models in a heterogeneous environment

Author:

Ghoreishi Afshin,Logan Roger

Abstract

In this paper we discuss existence of positive solutions to a general nonlinear elliptic system of reaction-diffusion equations representing a predator-prey or competition model of interaction between two species, in a heterogeneous environment. We also consider homogeneous Dirichlet and/or Robin boundary conditions. In the predator-prey case we give necessary and sufficient conditions for the existence of positive solutions, while in the competition case we give sufficient conditions. We use index theory in a positive cone to attack our problem and characterise our results by the sign of the first eigenvalues of certain Schrodinger type operators.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference20 articles.

1. Weakly coupled systems of nonlinear elliptic boundary value problems

2. On the dirichlet problem for elliptic systems

3. [16] Li L. and Ghoreishi A. , ‘On positive solutions of general nonlinear elliptic symbiotic interacting systems’, Appl. Anal, (to appear).

4. [15] Li L. , On uniqueness of positive solution of a nonlinear elliptic system, J. Differential Equations (to appear).

5. On positive solutions of some pairs of differential equations, II

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion;Mathematical Biosciences and Engineering;2016

2. Bibliography;Metasolutions of Parabolic Equations in Population Dynamics;2015-10-15

3. Coexistence of Three Competing Species with Non-negative Cross-diffusion rate;Journal of Dynamical and Control Systems;2014-03-21

4. Positive periodic solutions of a Hassell-Varley type predator-prey system;Indian Journal of Pure and Applied Mathematics;2013-12

5. Steady states for resource and sexual competition models with diffusions;Journal of Dynamical and Control Systems;2011-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3