Author:
ALI MD FIROZ,VASUDEVARAO A.
Abstract
The logarithmic coefficients$\unicode[STIX]{x1D6FE}_{n}$of an analytic and univalent function$f$in the unit disc$\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$with the normalisation$f(0)=0=f^{\prime }(0)-1$are defined by$\log (f(z)/z)=2\sum _{n=1}^{\infty }\unicode[STIX]{x1D6FE}_{n}z^{n}$. In the present paper, we consider close-to-convex functions (with argument 0) with respect to odd starlike functions and determine the sharp upper bound of$|\unicode[STIX]{x1D6FE}_{n}|$,$n=1,2,3$, for such functions $f$.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. [13] U. Pranav Kumar and A. Vasudevarao , ‘Logarithmic coefficients for certain subclasses of close-to-convex functions’, Preprint, 2016, arXiv:1607.01843v2.
2. Coefficient dispersion of univalent functions;Bazilevich;Mat. Sb.,1965
3. On the logarithmic coefficients of close-to-convex functions
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献