Author:
Cleary Joan,Morris Sidney A.
Abstract
Using the Iwasawa structure theorem for connected locally compact Hausdorff groups we show that every locally compact Hausdorff group G is homeomorphic to Rn × K × D, where n is a non-negative integer, K is a compact group and D is a discrete group. This makes recent results on cardinal numbers associated with the topology of locally compact groups more transparent. For abelian G, we note that the dual group, Ĝ, is homeomorphic to This leads us to the relationship card G = ω0(Ĝ) + 2ω0(G), where ω (respectively, ω0) denotes the weight (respectively local weight) of the topological group. From this classical results such as card G = 2 card Ĝ for compact Hausdorff abelian groups, and ω(G) = ω(Ĝ) for general locally compact Hausdorff abelian groups are easily derived.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献