Author:
CHANG MEI-CHU,SHPARLINSKI IGOR E.
Abstract
AbstractWe estimate double sums $$\begin{eqnarray}S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})=\mathop{\sum }\limits_{x\in {\mathcal{I}}}\mathop{\sum }\limits_{{\it\lambda}\in {\mathcal{G}}}{\it\chi}(x+a{\it\lambda}),\quad 1\leq a<p-1,\end{eqnarray}$$ with a multiplicative character ${\it\chi}$ modulo $p$ where ${\mathcal{I}}=\{1,\dots ,H\}$ and ${\mathcal{G}}$ is a subgroup of order $T$ of the multiplicative group of the finite field of $p$ elements. A nontrivial upper bound on $S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})$ can be derived from the Burgess bound if $H\geq p^{1/4+{\it\varepsilon}}$ and from some standard elementary arguments if $T\geq p^{1/2+{\it\varepsilon}}$, where ${\it\varepsilon}>0$ is arbitrary. We obtain a nontrivial estimate in a wider range of parameters $H$ and $T$. We also estimate double sums $$\begin{eqnarray}T_{{\it\chi}}(a,{\mathcal{G}})=\mathop{\sum }\limits_{{\it\lambda},{\it\mu}\in {\mathcal{G}}}{\it\chi}(a+{\it\lambda}+{\it\mu}),\quad 1\leq a<p-1,\end{eqnarray}$$ and give an application to primitive roots modulo $p$ with three nonzero binary digits.
Publisher
Cambridge University Press (CUP)
Reference30 articles.
1. On congruences with products of variables from short intervals and applications
2. Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm;Bourgain;Intern. Math. Res. Notices,2008
3. New bounds for Gauss sums derived from KTH powers, and for Heilbronn's exponential sum
4. Sums and products of sets and estimates of rational trigonometric sums in fields of prime order
5. The distribution of quadratic and higher residues;Davenport;Publ. Math. Debrecen,1952
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献