A supernilpotent non-special radical class

Author:

van Leeuwen L.C.A.,Jenkins T.L.

Abstract

Let F be the upper radical determined by all fields. The supernilpotent radical classes which are not special have thus far always contained F properly. The purpose of this note is to construct a countably infinite number of supernilpotent radical classes which are not special and each of which is properly contained in F. The construction involves a ring due to Leavitt which is interesting in its own right and is not generally known. All rings considered are associative.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference3 articles.

1. Lattices of radicals

2. [2] Рябухин Ю.м. [Ju.M. Rjabuhin], О наднильпотентных и специальных радинах [On hypernilpotent and special radicals]. Issled. po algebre i matem. analizu, 65–72 (“Kartja Moldovenjaske”, Kisinev, 1965). Translated by WilliamG. Leavitt (unpublished).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ON BAD SUPERNILPOTENT RADICALS;Bulletin of the Australian Mathematical Society;2011-12-15

2. RINGS DISTINCTIVE IN RADICAL THEORY;Quaestiones Mathematicae;1999-09

3. Special radicals and matrix near-rings;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1992-06

4. Prime essential rings;Proceedings of the Edinburgh Mathematical Society;1991-06

5. Characterizations of semisimple classes by means of ring elements;Periodica Mathematica Hungarica;1991-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3