Abstract
Every finite group G satisfies a law [x, ry] = [x, sy] for some positive integers r < s. The minimal value of r is called the depth of G. It is well known that groups of depth 1 are abelian. In this paper we prove the following. Let G be a finite group of depth 2. Then G/F(G) is supersoluble, metabelian and has abelian Sylow p-subgroups for all odd primes p. Moreover, lp(G) ≤ 1 for p odd and l2(G2) ≤ 1.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献