Abstract
A special case of the main result is the following. Let G be a finite, non-supersoluble group in which from arbitrary subsets X, Y of cardinality n we can always find x ∈ X and y ∈ Y generating a supersoluble subgroup. Then the order of G is bounded by a function of n. This result is a finite version of one line of development of B.H. Neumann's well-known and much generalised result of 1976 on infinite groups.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献