Abstract
Let for t ∈ [a, b] ⊂ [0, ∞)
where Ws is an n-dimensional Wiener process, f(s) an n-vector process and G(s) an n × m matrix process. f and G are nonanticipating and sample continuous. Then the set of limit points of the net
in Rn is equal, almost surely, to the random ellipsoid Et = G(t)Sm, Sm = {x ∈ Rm: |x| ≤ 1}. The analogue of Lévy's law is also given. The results apply to n-dimensional diffusion processes which are solutions of stochastic differential equations, thus extending the versions of Hinčin's and Lévy's laws proved by H.P. McKean, Jr, and W.J. Anderson.
Publisher
Cambridge University Press (CUP)
Reference3 articles.
1. [1] Anderson William James , “Local behaviour of solutions of stochastic integral equations”, (Ph.D. thesis, McGill University, Montreal, 1969).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献