Abstract
AbstractLet A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra
${A\oplus _1 X}$
, where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on
$A\oplus _1 X$
. We show that the module extension Banach algebra
$A\oplus _1 X$
is a BSE Banach algebra if and only if A is a BSE Banach algebra and
$X=\{0\}$
. Furthermore, we consider
$A\oplus _1 X$
as a Banach
$A\oplus _1 X$
-module and characterise the BSE module property on
$A\oplus _1 X$
. We show that
$A\oplus _1 X$
is a BSE Banach
$A\oplus _1 X$
-module if and only if A and X are BSE Banach A-modules.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献