ON THE EXISTENCE OF NON-NORM-ATTAINING OPERATORS

Author:

Dantas Sheldon,Jung MinguORCID,Martínez-Cervantes GonzaloORCID

Abstract

Abstract In this article, we provide necessary and sufficient conditions for the existence of non-norm-attaining operators in $\mathcal {L}(E, F)$ . By using a theorem due to Pfitzner on James boundaries, we show that if there exists a relatively compact set K of $\mathcal {L}(E, F)$ (in the weak operator topology) such that $0$ is an element of its closure (in the weak operator topology) but it is not in its norm-closed convex hull, then we can guarantee the existence of an operator that does not attain its norm. This allows us to provide the following generalisation of results due to Holub and Mujica. If E is a reflexive space, F is an arbitrary Banach space and the pair $(E, F)$ has the (pointwise-)bounded compact approximation property, then the following are equivalent: (i) $\mathcal {K}(E, F) = \mathcal {L}(E, F)$ ; (ii) Every operator from E into F attains its norm; (iii) $(\mathcal {L}(E,F), \tau _c)^* = (\mathcal {L}(E, F), \left \Vert \cdot \right \Vert )^*$ , where $\tau _c$ denotes the topology of compact convergence. We conclude the article by presenting a characterisation of the Schur property in terms of norm-attaining operators.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakening of a local Bollobás type property and geometry of Banach spaces;Acta Scientiarum Mathematicarum;2023-09-18

2. Extremal Structure of Projective Tensor Products;Results in Mathematics;2023-07-31

3. A note on numerical radius attaining mappings;Proceedings of the American Mathematical Society;2023-05-12

4. Daugavet property of Banach algebras of holomorphic functions and norm-attaining holomorphic functions;Advances in Mathematics;2023-05

5. Some remarks on the weak maximizing property;Journal of Mathematical Analysis and Applications;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3