Abstract
Ill-posedness for the compressible Navier–Stokes equations has been proved by Chen et al. [On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces, Revista Mat. Iberoam.31 (2015), 1375–1402] in critical Besov space $L^{p}$$(p>6)$ framework. In this paper, we prove ill-posedness with the initial data satisfying $$\begin{eqnarray}\displaystyle \Vert \unicode[STIX]{x1D70C}_{0}-\bar{\unicode[STIX]{x1D70C}}\Vert _{{\dot{B}}_{p,1}^{\frac{3}{p}}}\leqslant \unicode[STIX]{x1D6FF},\quad \Vert u_{0}\Vert _{{\dot{B}}_{6,1}^{-\frac{1}{2}}}\leqslant \unicode[STIX]{x1D6FF}. & & \displaystyle \nonumber\end{eqnarray}$$ To accomplish this goal, we require a norm inflation coming from the coupling term $L(a)\unicode[STIX]{x1D6E5}u$ instead of $u\cdot \unicode[STIX]{x1D6FB}u$ and construct a new decomposition of the density.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献