UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY

Author:

McEnteggart Oliver,Miller Jason,Qian WeiORCID

Abstract

AbstractWe give a simple set of geometric conditions on curves $\unicode[STIX]{x1D702}$, $\widetilde{\unicode[STIX]{x1D702}}$ in $\mathbf{H}$ from $0$ to $\infty$ so that if $\unicode[STIX]{x1D711}:\mathbf{H}\rightarrow \mathbf{H}$ is a homeomorphism which is conformal off $\unicode[STIX]{x1D702}$ with $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})=\widetilde{\unicode[STIX]{x1D702}}$ then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$. Our motivation comes from the fact that it is possible to apply our result to random conformal welding problems related to the Schramm–Loewner evolution (SLE) and Liouville quantum gravity (LQG). In particular, we show that if $\unicode[STIX]{x1D702}$ is a non-space-filling $\text{SLE}_{\unicode[STIX]{x1D705}}$ curve in $\mathbf{H}$ from $0$ to $\infty$, and $\unicode[STIX]{x1D711}$ is a homeomorphism which is conformal on $\mathbf{H}\setminus \unicode[STIX]{x1D702}$, and $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})$, $\unicode[STIX]{x1D702}$ are equal in distribution, then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$. Applying this result for $\unicode[STIX]{x1D705}=4$ establishes that the welding operation for critical ($\unicode[STIX]{x1D6FE}=2$) LQG is well defined. Applying it for $\unicode[STIX]{x1D705}\in (4,8)$ gives a new proof that the welding of two independent $\unicode[STIX]{x1D705}/4$-stable looptrees of quantum disks to produce an $\text{SLE}_{\unicode[STIX]{x1D705}}$ on top of an independent $4/\sqrt{\unicode[STIX]{x1D705}}$-LQG surface is well defined.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference59 articles.

1. 18. Gwynne, E. and Miller, J. , Conformal covariance of the Liouville quantum gravity metric for $\unicode[STIX]{x1D6FE}\in (0,2)$ , Preprint, May 2019, arXiv:1905.00384.

2. Dimension of the SLE Light Cone, the SLE Fan, and $${{\rm SLE}_\kappa(\rho)}$$ SLE κ ( ρ ) for $${\kappa \in (0,4)}$$ κ ∈ ( 0 , 4 ) and $${\rho \in}$$ ρ ∈ $${\big[{\tfrac{\kappa}{2}}-4,-2\big)}$$ [ κ 2 - 4 , - 2 )

3. Exploration trees and conformal loop ensembles

4. Sur le chaos multiplicatif;Kahane;Ann. Sci. Math. Québec,1985

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conformal welding of quantum disks;Electronic Journal of Probability;2023-01-01

2. The SLE loop via conformal welding of quantum disks;Electronic Journal of Probability;2023-01-01

3. Characterizations of SLE$ _{\kappa}$ for $ \kappa \in (4,8)$ on Liouville quantum gravity;Astérisque;2022-02-18

4. The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions;Probability Theory and Related Fields;2019-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3