Author:
Li Ning,Ma Wentao,Man Weishi,Cao Liu,Zhang Hui
Abstract
The High-degree Cubature Kalman Filter (HCKF) is proposed as a novel methodology based on the arbitrary degree spherical rule, which can achieve better performance than the traditional Kalman filter. However, it also has a large calculation burden when used in a high-dimension and high-degree of accuracy estimation system. The number of sampling points of an HCKF increases polynomially with increasing state-space dimensions, which further increases the calculation burden. The reduction of the number of the state-space dimensions is the main contribution of this study. A strategy for HCKF based on the partitioning of the state-space and orthogonal principle is introduced, referred to as the Multiple Robust HCKF (MRHCKF). It is shown that this technique can effectively reduce the calculation burden for the high-dimension system with robust performance. Numerical simulations are performed for the example of high-dimension relative position and attitude estimation to show that the proposed method can obtain nearly the same performance as the HCKF, while drastically reducing computational complexity.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography