Coverage Analysis of Lunar Communication/Navigation Constellations Based on Halo Orbits and Distant Retrograde Orbits

Author:

Gao Zhao-YangORCID,Hou Xi-Yun

Abstract

AbstractWith more and more missions around the Moon, a communication/navigation constellation around the Moon is necessary. Halo orbits, due to their unique geometry, are extensively studied by researchers for this purpose. A dedicated survey is carried out in this work to analyse the coverage ability of halo orbits. It is found that a two-satellite constellation is enough for continuous one-fold coverage of the north or the south polar regions but never both. A three-satellite constellation is enough for continuous one-fold coverage of both north and south polar regions. A four-satellite constellation can cover nearly 100% of the whole lunar surface. In addition, the coverage ability of another special orbit – distant retrograde orbit (DRO) – is analysed for the first time in this study. It is found that three satellites on DROs can cover 99·8% of the lunar surface, with coverage gaps at polar caps. A four-satellite constellation moving on spatial DROs can cover nearly the whole lunar surface. By combining halo orbits and DROs, we design a five-satellite constellation composed of three halo orbit satellites and two DRO satellites. This constellation can provide 100% continuous one-fold coverage of the whole lunar surface.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3