Real-time Terrain Matching Based on 3D Zernike Moments

Author:

Wang KedongORCID,Zhu Tongqian,Wang Jinling

Abstract

Since the descriptors based on Three-Dimensional (3D) Zernike moments are robust to geometric transformations and noise, they have been proposed for terrain matching. However, terrain matching algorithms based on 3D Zernike Moments (3DZMs) are often difficult to implement in practice since they are computationally intensive. This paper presents a more efficient real-time terrain matching algorithm based on 3DZMs for land applications. Two efficient methods based on coordinate transformation and symmetry are proposed to compute the geometric moments. The impact of the sample difference on the matching result due to heading angle is investigated to prove the feasibility of using a circular template. Consequently, the terrain feature vectors of the reference map can be computed off-line with the circular template to significantly reduce on-line computation. Numerical experiments on a real digital elevation model demonstrate that the proposed algorithm is robust to the heading angle and can be implemented for real-time terrain matching operations.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference35 articles.

1. Harris C. and Stephens M. (1988). A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, 147–151.

2. Shape retrieval using 3D Zernike descriptors

3. Wu Q. T. and Ye B. (2008). 3D terrain matching algorithm and performance analysis based on 3D Zernike moments. Proceedings of International Conference on Computer Science and Software Engineering, December 12–14, 6: 73–76.

4. Application of acoustic image processing in underwater terrain aided navigation

5. Visual pattern recognition by moment invariants;Hu;IRE Transactions on Information Theory,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3